

ATUL VIDYALAYA SECOND PRELIMINARY EXAMINATION-2012-13 MATHEMATICS

STD:XII Science DATE: / /

MM: 100 TIME: 3 hrs

[3]

GENERAL INSTRUCTION (Three hours)

(Candidate are allowed additional 15 minutes for **only** reading the paper . They must **NOT** start writing during this time)

There will be one paper of **three** hours duration of 100 marks. The syllabus is divided into three sections A, B and C. Section A is compulsory for all candidates. Candidates will have choice of attempting questions from **either** from Section B or Section C.

Section A(80 marks) will consists of 9 questions. Candidate will be required to answer **Question -1** (Compulsory) and five out of the rest of the eight question.

Section B/C(20 marks) Candidate will be required to answer two questions out of three from either Section B or Section C.

Section – A

Question 1.

i) Find the value of x , if
$$\sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{7}{25}\right) = \cot^{-1} x$$

[3]

ii) Show that the equation
$$y = be^x + ce^{2x}$$
 is a solution of the differential equation

$$\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$
[3]

iii) Find the area between the curve $x = y^2 - 2y$, the y – axis and the abscissa, y = 1and y = 2. [3]

iv) Evaluate :
$$\int_{0}^{3} \frac{x}{1+x^{2}} dx$$
[3]

 $\frac{2+3i}{2}$

- Find the modulus and amplitude of 3+2i.
- vi) Find " c " of the Lagrange's Mean Value Theorem when f(x) = x(x-2) in [1, 2]. [3]
- vii) Find the probability of getting an even number on the first die or a total of 8 in a single throw of two dice . [3]

iix) For the matrix
$$A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$$
, find x and y so that $A^2 = xI = yA$. Hence, find A^{-1} .[3]
ix) Simplify the Boolean expression : $x + x.y' + x'.y$
[3]

$$\lim_{x \to \infty} (\sec x - \tan x)$$

Evaluate : $x \rightarrow \frac{\pi}{2}$

[3]

Question 2.

X)

V)

i) Prove that
$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$
. [5]

ii) If
$$A = \begin{bmatrix} 4 & -5 & -11 \\ 1 & -3 & 1 \\ 2 & 3 & -7 \end{bmatrix}$$
, find A^{-1} . Using A^{-1} , solve the system of linear equations :
$$4x - 5y - 11z = 12$$
$$x - 3y + z = 1$$
$$2x + 3y - 7z = 2$$
[5]

Atul Vidyalaya STD. XII SCI.

Pg.1

Shaping the future MATHEMATICS

Question 3

i) Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$ [5]

ii) Find the co-ordinate of the points on the ellipse $4x^2 + y^2 = 8$ at which tangents are parallel to the straight line 2x - y = 7. [5]

Question 4.

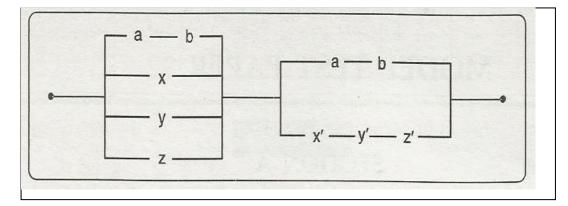
- i) Suppose A and B are two equally strong table tennis players. Which of the following two events is more probable ?
 - a) A beats b in exactly 3 games out of 4, or
 - b) A beats B in exactly 5 games out of 8 ? [5]
- ii) Find the probability of throwing 11 with three dice . [5]

Question 5.

i) Evaluate :
$$\int x^2 \sin^{-1} x dx$$
 [5]

ii) Prove that the triangle of maximum area inscribed in a given circle must be equilateral. [5]

Question 6.


- i) Find the area of the region lying in the first quadrant bounded by the parabola $y^2 = 4x$, the x-axis and the ordinate x = 4. [5]
- ii) Verify Lagrange's Mean Value theorem for the given function in the given interval

and find the value of " c " of this theorem
$$f(x) = \sqrt{x^2 - 1}$$
 in [1 , 3]. [5]

Question 7.

i) If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$. [5]

ii) Write the Boolean expression for the following switching circuit :

Using laws of Boolean algebra, simplify the circuit and construct an equivalent

Question 8.

i) Calculate the coefficient of correlation between x and y for the following data : [5]

x	10	7	12	9	16	18	8	14	
У	6	4	7	10	7	15	5	11	

ii) If two coefficient of regression are - 0.6 and -1.4, find the coefficient of correlation .[5]

Atul Vidyalaya	Pg.2	Shaping the future
STD. XII SCI.		MATHEMATICS

Question 9

i) If 1 , ω , ω^2 are the three cube roots of unity , show that

$$x^{3} - y^{3} = (x - y)(\omega x - \omega^{2} y)(\omega^{2} x - \omega y)$$
(5]
ii) Solve : $(x^{2} - yx^{2})dy + (y^{2} + xy^{2})dx = 0$
[5]

(Answer *two* questions from *either* Section B or Section C) SECTION B

Question 10

- i) A variable plane is at a constant distance p from origin and meets the axes in A, B and C. Through A, B, C planes are drawn parallel to the co-ordinate planes, show that the locus of their point of intersection is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$. [5]
- ii) Find the equation to the line that intersects the lines 2x + y 1 = 0, x + 2y + 3z = 0 and

$$3x - y + z + 2 = 0, 4x + 5y - 2z - 3 = 0$$
 and parallel to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$. [5]

Question 11

i) Prove that the triangle whose vertices have the position vectors

$$2\hat{i}+4\hat{j}-\hat{k},4\hat{i}+5\hat{j}+\hat{k},3\hat{i}+6\hat{j}-3\hat{k}$$
 is an isosceles right angled triangle . [5]

ii) If
$$a = 4\hat{i} + 3\hat{j} - \hat{k}, b = 2\hat{i} + \hat{j} + 3\hat{k}$$
 and $c = \hat{i} - \hat{j} + 2\hat{k}$, then simplify $(a-b)X(b+c)$. [5]

Question 12

- i) Urn 1 contains 5 red and 5 black balls, urn 2 contains 4 red and 8 black balls and urn -3 contains 3 red and 6 black balls. One urn is chosen at random and a ball is drawn. The colour of the ball is black. What is the probability that this has been drawn from urn – 3?
- ii) Mean and standard deviation of a binomial distribution are respectively 4 and $\sqrt[V_3]$. Find the value of n and p . [5]

SECTION C

Question 13

 From the following data, giving the prices in arbitrary units and quantities of commodities A, B and C compute the weighted aggregate index of 1992 using 1986 as base year :

Commodity	Quantities	Pric	ces
		1986	1992

8

[5]

A	7	321	581
В	8	54	67
C	4	224	305

ii) The following mid-day temperature in degree centigrades were recorded at a place In the U.K. for the first 14 days of January 1975 :

Atul Vidyalaya

Pg. 3

Shaping the future

STD. XII SCI.		
---------------	--	--

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Tem.	0	4	2	6	2	-1	-3	1	5	0	4	5	6	7

Calculate 5 day moving averages for this period and display them and the original table on the same graph . [5]

Question 14

- i) What is the actual rate of interest which a banker gets for the money when he discounts a bill legally due in 6 months at 5% p.a. ?
 [5]
- ii) A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts, while it takes 3 hours on machine A and 1 nour on machine B to produce a package of bolts. He earns a profit of ` 2.50 per package on nuts and ` 1 per package on bolts . Form a linear programming problem to maximize his profit, if he operates each machine for at least 12 hours.

Question 15

- i) What sum should be invested every year at 5% per annum compound interest for 20 years to replace plant and machinery which is expected to cost then , 25% more , over its present cost of ` 60 , 000 ?
- ii) Given the cost function C(x) = 50 + 2x and demand function p = 100 4x. Find the (a) equilibrium output
 - (b) Maximum price

[5]

Atul Vidyalaya

Pg. 4

Shaping the future